	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date: 01-08-2019
	Title:	Course Plan	Page: 1 / 44

Copyright ©2017. cAAS. All rights reserved.

Table of Contents

1 8EE32 : Electrical circuit Analysis 2
A. COURSE INFORMATION 2

1. Course Overview 2
2. Course Content 2
3. Course Material 3
4. Course Prerequisites 3
B. OBE PARAMETERS 3
5. Course Outcomes 3
6. Course Applications 4
7. Articulation Matrix. 4
8. Mapping Justification 5
9. Curricular Gap and Content 6
10. Content Beyond Syllabus 6
C. COURSE ASSESSMENT 6
11. Course Coverage 6
12. Continuous Internal Assessment (CIA) 7
D1. TEACHING PLAN - 1 7
Module - 1 7
Module - 2 9
E1. CIA EXAM - 1 11
a. Model Question Paper - 1 11
b. Assignment -1 13
D2. TEACHING PLAN - 2 16
Module - 3 16
Module - 4 19
E2. CIA EXAM - 2 20
a. Model Question Paper - 2 20
b. Assignment - 2 22
D3. TEACHING PLAN - 3 26
Module - 5 26
E3. CIA EXAM - 3 27
a. Model Question Paper - 3 27
b. Assignment - 3 28
F. EXAM PREPARATION 30
13. University Model Question Paper 30
14. SEE Important Questions 33

	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date: 01-08-2019
	Title:	Course Plan	Page: 2 / 44

Copyright ©2017. cAAS. All rights reserved.
Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

18EE32: Electrical Circuit Analysis

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	EE
Year / Semester:	$2 / 3$	Academic Year:	$2019-2020$
Course Title:	Electrical circuit analysis	Course Code:	$18 E E 32$
Credit / L-T-P:	$4 /$ L	SEE Duration:	180 Minutes
Total Hours:	50	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	$1 /$ Module
Course Plan Author:	M.Nagaraja	Sign	Dt:
Checked By:	HOD	Sign	Dt:

2. Course Content.

$\begin{aligned} & \text { Mod } \\ & \text { ule } \end{aligned}$	Module Content	Teaching Hours	Module Concepts	Blooms Level
1	Active and passive elements, Concept of ideal and practical sources. Source transformation and Source shifting, Concept Of Super-Mesh and Super node analysis. Analysis of networks by (i) Network reduction method including star - delta transformation, (ii) Mesh and Node voltage methods for ac and dc circuits with independent and dependent sources. Duality.	10	Network simplification	L3,L4
2	Network Theorems: Super Position Theorem, Reciprocity theorem, Thevenin's Theorem, and Norton's Theorem. Analysis of networks, with and without dependent ac and dc sources.	10	Network theorems	$\begin{gathered} \mathrm{L} 2, \mathrm{~L} 3, \mathrm{~L} \\ 4 \end{gathered}$
3	Resonant Circuits: Analysis of simple series RLC and parallel RLC circuits under resonances. Problems on Resonant frequency, Bandwidth and Quality factor at	10	Resonant circuit	L2,L3

EE
Prepared by

		SKIT	Teaching Process		Rev No.: 1.0	
		Doc Code:	SKIT.Ph5b1.F02		Date: 01-08-2019	
		Title:	Course Plan		Page: 3 / 44	
Copyright ©2017. cAAS. All rights reserved.						
	reson analys Behav Evalua	nce is of RL and or of circuit tion of initia	Transient Analysis: Transient RC circuits under DC and AC excitation: elements under switching action, conditions.		and Transient Response	
4	Lapla of Im functi theor	ce Transfo ulse, Step, ns. Wavefo ms	mation: Laplace transformation (LT), LT amp, Sinusoidal signals and shifted m synthesis. Initial and Final value	10	S-Domain Representation	L2,L3
5		anced Th systems, ca Port netw circuit adm valuation for	phase systems: Analysis of three culation of real and reactive powers. rks: Definition,Open circuit impedance, tance and Transmission parameters and simple circuits.	10	Three phase system analysis	$\left\lvert\, \begin{gathered} \mathrm{L} 2, \mathrm{~L} 3, \mathrm{~L} \\ 4 \end{gathered}\right.$

3. Course Material

Mod ule	Details	Available
	Textbooks:	Library
1.	Engineering Circuit Analysis ,William H Hayt et al ,Mc Graw Hill 8th Edition,2014	Library
2.	Network Analysis ,M.E. Vanvalkenburg ,Pearson ,3rd Edition,2014	Library
3.	Fundamentals of Electric Circuits ,Charles K Alexander Matthew N O Sadiku Mc Graw Hill, 5th Edition,2013.	
	Reference Books :	Engineering Circuit Analysis ,J David Irwin et al ,Wiley India ,10th Edition,2014
2.	Dectric Circuits ,Mahmood Nahvi, Mc Graw Hill ,5th Edition,2009	Dept. Library
3.	Introduction to Electric Circuits, Richard C Dorf and James A Svoboda ,Wiley ,9th Edition,2015.	Dept. Library
4.	Circuit Analysis; Theory and Practice ,Allan H Robbins Wilhelm C Miller ,Cengage ,5th Edition,2013.	Dept. Library

EE
Prepared by

	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date: 01-08-2019
	Title:	Course Plan	Page: 4 / 44

Copyright ©2017. cAAS. All rights reserved.
4. Course Prerequisites

SNo	Course Code	Course Name	Module / Topic / Description	Sem	Remarks	Blooms Level
1	$\begin{gathered} 17 \mathrm{EE} 15 \\ / 17 \mathrm{EE} 2 \\ 5 \end{gathered}$	Basic Electrical	DC circuits	$\begin{gathered} 1^{\text {st }} / 2^{\text {nd }} \\ \text { sem } \end{gathered}$		L2,L3,L4
2	$\begin{aligned} & 17 \mathrm{EC} 23 \\ & / 13 \end{aligned}$	Basic electronics	1. Knowledge on Passive and Active elements	$\begin{gathered} 1^{\text {st }} / 2^{\text {nd }} \\ \text { sem } \end{gathered}$		L1
3	-	-	2. Knowledge of fundamental of maths	-	Bridge course of maths for students	L1

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

B. OBE PARAMETERS

1. Course Outcomes

\#	COs	Teach Hours	Concept	Instr Method	Assessment Method	Blooms' Level
18EE32.1	To analyze behavior of basic circuit elements and to apply concept of mesh and node analysis in circuit theory	5	Electrical circuit behavior	Lecture	Assignment and unit test	L3
18EE32.2	Reduce the complexity of network using source shifting, source transformation and network reduction using transformations.	5	Network reduction	Lecture and tutorial	Assignment	L4
18EE32.3	Apply various network theorems to determine the circuit response behavior	5	complex electrical network solution	Lecture and tutorial	Assignment	L3
18 EE 32.4	Solve complex electric circuits using network theorems	5	Network theorems	Lecture and tutorial	Assignment and unit test	L4
18EE32.5	Apply the knowledge of resonance for series and parallel RLC circuit and calculation of various electrical quantities for 3 phase circuits	5	Series and parallel resonance	Lecture	Assignment	L3
18EE32.6	To study necessary conditions for driving point functions , transfer	5	Initial conditions	Lecture and	Assignement and unit test	L4

EE
Prepared by

	Teaching Process				Rev No.: 1.0	
	Doc Code: SKIT.Ph5b1.F02				Date: 01-08-2019	
	Title: Course Plan				Page: 5 / 44	
Copyright O2017. cAAS. All rights reserved.						
	function for their application to a given network for analyzing circuit design.			tutorial		
18EE32.7	Evaluate the initial conditions using knowledge of Laplace transformation	5	S domain representati on	Lecture and tutorial	Assignement	L4
18EE32.8	Synthesize typical waveforms using Laplace transformation	5	Waveform synthesis	Lecture and tutorial	Assignement and unit test	L4
18 EE 32.9	Solve unbalanced three phase systems.	5	Unbalanced system	Lecture	Assignement	L3
18EE32.10	Evaluate the performance of two port networks	5	Two port network	Lecture and tutorial	Assignement and unit test	L4
-	Total	50	-	-	-	-

Note: Identify a max of 2 Concepts per Module. Write 1 CO per concept.

2. Course Applications

SNo	Application Area	CO	Level
1	To build a network.	CO 1	$\mathrm{~L} 1, \mathrm{~L} 2$
2	Network reduction.	CO 2	$\mathrm{~L} 2, \mathrm{~L} 3$
3	audio amplifier driving a speaker as that is an analogous situation.	CO 3	L 4
4	nonlinear resistive circuits,	CO 4	L 4
5	Tuning application, resonator.	CO 5	L 4
6	Voltage regulator .	CO 6	L 4
7	Process Controls, Digital Signal Processing.	CO 7	$\mathrm{~L} 3, \mathrm{~L} 4$
8	System Modelling ,Analysis of Electrical Circuits ,Nuclear Physics.	CO 8	$\mathrm{~L} 3, \mathrm{~L} 4$
9	Modeling and control of three phase system	CO 9	L 4
10	amplification circuits and filters	CO 10	L 4

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO - PO MAPPING)

-	Course Outcomes	Program Outcomes												
\#	COs	PO 1	PO2	$\begin{gathered} \mathrm{PO} \\ 3 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{PO} \\ 4 \end{array}$	$\begin{gathered} \mathrm{PO} \\ 5 \end{gathered}$	PO6	$\begin{gathered} \mathrm{PO} \\ 7 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{PO} \\ 8 \end{array}$	PO9	$\begin{aligned} & \mathrm{PO} \\ & 10 \end{aligned}$	$\begin{aligned} & \hline \mathrm{PO} \\ & 11 \end{aligned}$	$\begin{aligned} & \mathrm{PO} \\ & 12 \end{aligned}$	Level
18EE32.1	To analyze behavior of basic circuit elements and to apply concept of mesh and node analysis in circuit theory	3	3	-	-	-	-	-	-	-	-	-	-	L2
18EE32.2	Reduce the complexity of	3	3	-	-	2	-	-	-	-	-	-	-	L3

EE
Prepared by

4. Mapping Justification

Mapping		Justification	Mapping Level
CO	PO	-	-
CO1	PO1	Knowledge of kirchoff's current and voltage law is required to estimate the current through and voltage across circuit elements.	L 2
CO1	PO2	Analyzing the complexity in the network requires the knowledge of KVL and KCL	L 3
CO2	PO1	Knowledge of network reduction techniques is required to reduce the complex network	L 2

EE
Prepared by

	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date: 01-08-2019
	Title:	Course Plan	Page: 7 / 44

Copyright ©2017. cAAS. All rights reserved.

CO2	PO2	Analyzing the complexity of the network is required to reduce it in simplified form by suitable transformation method	L3
CO3	PO1	Students will be able to learn and apply all the basic equations of maths, physics and its importance in network analysis	L3
CO3	PO2	Students will be able to analyze, evaluate and design solutions to solve complex engineering problems for that , economically feasible and socially acceptable	L4
CO3	PO5	Offer engineering solutions by usage of modern tools to meet needs of people.	L4
CO4	PO1	Students will be able to learn and apply all the basic equations of maths, physics and its importance in network analysis	L3
CO4	PO2	Students will be able to analyze, evaluate and design solutions to solve complex engineering problems for that , economically feasible and socially acceptable	L4
CO5	PO1	Students will be able to learn and apply all the basic equations of maths, physics and its importance in network analysis	L3
CO5	PO2	Students will be able to analyze, evaluate and design solutions to solve complex engineering problems for that , economically feasible and socially acceptable	L3
CO5	PO5	Offer engineering solutions by usage of modern tools to meet needs of people.	L3
CO6	PO1	Students will be able to learn and apply all the basic equations of maths, physics and its importance in network analysis	L3
CO6	PO2	Students will be able to analyze, evaluate and design solutions to solve complex engineering problems for that , economically feasible and socially acceptable	L4
CO6	PO5	Offer engineering solutions by usage of modern tools to meet needs of people.	L4
CO7	PO1	Students will be able to learn and apply all the basic equations of maths, physics and its importance in network analysis	L3
CO7	PO2	Students will be able to analyze, evaluate and design solutions to solve complex engineering problems for that , economically feasible and socially acceptable	L4
CO7	PO5	Offer engineering solutions by usage of modern tools to meet needs of people.	L4
CO8	PO1	Students should be able to lean and apply the techniques for waveform synthesis	L3
CO8	PO2	Students should be able to analyze and evaluate the basics of physics ,maths in s-domain	L4
CO9	PO1	Students should be able to learn and apply the basic electrical equations of power	L3
CO9	PO2	Students should be able to analyse and evaluate the three	L4

EE
Prepared by

	SKIT	Teaching Process ${ }^{\text {a }}$ Rev No.	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02 Date: 0	Date: 01-08-2019
	Title:	Course Plan Page: 8	Page: 8 / 44
Poyright ©2017. CAAS. All rights reserved.			
		phase power for various loading	
CO10	PO1	Students will be able to learn and apply all the basic equations of maths, physics and its importance in network analysis	L3
CO10	PO2	Students will be able to analyze, evaluate and design solutions to solve complex engineering problems for that , economically feasible and socially acceptable	L4
CO10	PO3	Offer engineering solutions by usage of modern tools to meet needs of people.	L4

Note: Write justification for each CO-PO mapping.

5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A. 4 and add others also.

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					

Note: Anything not covered above is included here.

EE
Prepared by

	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date: 01-08-2019
	Title:	Course Plan	Page: 9 / 44

Copyright ©2017. cAAS. All rights reserved.

C. COURSE ASSESSMENT

1. Course Coverage

Mod	Title	Teaching Hours	No. of question in Exam						CO	Levels
ule \#			CIA-	$\begin{gathered} \text { CIA- } \\ 2 \end{gathered}$	$\begin{gathered} \text { CIA- } \\ 3 \end{gathered}$	Asg	Extra Asg	SEE		
1	Basic Concepts	10	2	-	-	1	0	2	$\begin{aligned} & \mathrm{CO1}, \\ & \mathrm{CO} 2 \end{aligned}$	L2,L3
2	Network theorems	10	2	-	-	1	0	2	$\begin{aligned} & \mathrm{CO} 3 \\ & \mathrm{CO} 4 \end{aligned}$	$\begin{gathered} \mathrm{L} 2, \mathrm{~L} 3, \mathrm{~L} \\ 4 \end{gathered}$
3	Resonant Circuits and Transient Analysis	10	-	2	-	1	0	2	$\begin{aligned} & \text { CO5, } \\ & \text { CO6 } \end{aligned}$	L3,L4
4	Laplace Transformation	10	-	2	-	1	0	2	$\begin{gathered} \mathrm{CO}, \\ \mathrm{C} 08 \end{gathered}$	L3,L4
5	Unbalanced Three phase systems and Two Port networks	10	-	-	4	1	0	2	$\begin{aligned} & \text { CO9, } \\ & \text { CO10 } \end{aligned}$	L3,L4
-	Total	50	4	4	4	5	5	10	-	-

Note: Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.
2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	CO	Levels
CIA Exam - 1	15	CO1, CO2, CO3, CO4	L2, L3
CIA Exam - 2	15	CO5, CO6, CO7, C08	L3, L4
CIA Exam - 3	15	C09, C010	L3, L4
Assignment - 1	05	CO1, CO2, CO3, CO4	L2, L3
Assignment - 2	05	C05, C06, C07, CO8	L3, L4
Assignment - 3	05	C09, CO10	L3, L4
Seminar - 1	-	-	-
Seminar - 2	-	-	-
Seminar - 3	-	-	-
OtherActivities:	-	-	-
Final CIA Marks	20		-

Note : Blooms Level in last column shall match with A. 2 above.

EE
Prepared by

	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date: 01-08-2019
	Title:	Course Plan	Page: 10 / 44

Copyright ©2017. cAAS. All rights reserved.
D1. TEACHING PLAN - 1
Module - 1

Title:	Divide and Conquer	Appr Time:	16 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	To analyze behavior of basic circuit elements and to apply concept of mesh and node analysis in circuit theory	CO1	L2
2	Reduce the complexity of network using source shifting, source transformation and network reduction using transformations.	CO2	L3
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
1	Introduction to Active and passive elements	CO1	L1
2	Concept of Concept of ideal and practical sources.	CO1	L2
3	Source transformation and Source shifting	CO1	L2,L3
4	Problems	CO1	L2,L3,L4
5	Concept of Super-Mesh and Super node analysis	CO1	L3,L4
6	Problems	CO1	L3,L4
7	Analysis of networks by (i) Network reduction method including star delta transformation	CO2	L2,L3
8	Problems	CO2	L2,L3,L4
9	Analysis of networks by ii)Mesh and Node voltage methods for ac and dc circuits with independent and dependent sources	CO2	L2,L3
10	Concept of Duality.	CO2	L2,L3
c	Application Areas	CO	Level
1	To build a network.	CO1	L1,L2
2	Network reduction.	CO2	L2,L3
d	Review Questions	-	-
1	Calculate the current in 20Ω resistor in the network shown in fig. 1 by sourse transformation method.	CO1	L4
2	Obtain Expressions for a set of Equivalent delta connected impedances to replace a set of star connected impedances.	CO2	L2

EE
Prepared by

	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date: 01-08-2019
	Title:	Course Plan	Page: 11 / 44

Copyright ©2017. cAAS. All rights reserved.

3	Reduce the network shown in fig.2a. to a single voltage source in series with a resistance using source shifting and transformation.	CO 2	L2
4	Determine the current through 10Ω resistance in the network shown in fig.2b. by Star-Delta conversion.	CO1	L4
5	For the network shown in fig.3a, find the node voltages.	CO1	L4
6	Solve for Mesh current in the fig. 3b given b	CO1	L4
7	Obtain the delta connected equivalent of the network shown in fig.4a	CO 2	L3
8	Find the power delivered by the 6 V source in the circuit shown in fig. 4 b using Mesh analysis	CO1	L4
9	Find the three unknown currents in the circuit shown in Fig.Q.1(a) using mesh analysis. Fig.Q. 1 (a)		L4
10	Define the following, i)Linear and Non linear elements, ii) Lumped and distributed iii)Active and Passive elements iv) Time varient and time invarient system	CO1	L4
11	Define the following i)Dependent and independent sources ii) deterministic and random elements	CO1	L4
12	Write a a note on i)voltage controlled voltage source ii)current controlled voltage source iii) voltage controlled current source iv) current controlled current source	$\mathrm{CO1}$	L4
e	Experiences		
1			
2			
3			
4			
5			

Module - 2

Title:	Divide and Conquer	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level

EE
Prepared by

	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date: 01-08-2019
	Title:	Course Plan	Page: 12 / 44

1	Apply various network theorems to determine the circuit response / behavior	CO3	L3
2	Solve complex electric circuits using network theorems	CO4	L3,L4
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
11	Introduction to Network Theorems:Super Position Theorem	CO3	L2
12	Problems	CO3	L3
13	Reciprocity theorem	CO3	L4
14	Problems	CO3	L4
15	Thevenin's Theorem,	CO3	L3
16	Problems	CO4	L4
17	Norton's Theorem	CO4	L4
18	Problems	CO4	L4
19	Analysis of networks, with and without dependent ac and dc sources.	CO4	L4
20	Problems	CO4	L4
c	Application Areas	CO	Level
1	audio amplifier driving a speaker as that is an analogous situation.	CO3	L4
2	nonlinear resistive circuits,	CO4	L4
d	Review Questions	-	-
19	State and explain thevenins theorem.	CO3	L3
20	Obtain the norton's equivalent of the network shown in fig,	CO3	L4
21	State and explain maximum power transfer theorem for AC network	CO4	L3
22	State and explain Nortons theorem.	CO3	L3
23	Calculate the thevenin's equivalent circuit across A,B terminals for the network shown in fig below,	CO3	L4
24	Obtain the condition for an alternating voltage source to transfer in power to the load when the load impedance is the complex conjugate of the source impedance.	CO4	L3
25	Find the current i1, in the circuit show in Fig.Q.3(a) by applying superposition theorem	CO 3	L4

EE
Prepared by

SKIT		Teaching Process
Rev No.: 1.0		
Ditle:	Course Plan	Date: $01-08-2019$
	Page: $13 / 44$	

Copyright ©2017. cAAS. All rights reserved.

EE
Prepared by

	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date: 01-08-2019
	Title:	Course Plan	Page: 14 / 44

Copyright ©2017. cAAS. All rights reserved.

32	Obtain Thevenin's equivalent network for the Figure shown below.	CO3	L4
33	For the circuit shown in Figure find the load impedance Z_{L} that absorbs the maximum average power. Calculate that maximum average power	CO4	L4
34	Find $i 0$ in the circuit of Figure using superposition theorem.	CO3	L4
35	State the limitations for Thevenin's theorem.	CO3	L2
e	Experiences	-	-
1			
2			
3			
4			
5			

EE
Prepared by

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 01-08-2019	
Title:	Course Plan	Page: $15 / 44$	

Copyright ©2017. cAAS. All rights reserved.
E1. CIA EXAM - 1
a. Model Question Paper - 1

Crs Code:	18 EE32	Sem:	3	Marks:	30	Time:	75 minutes

Course: Electrical circuit Analysis

-	-	Note: Answer any 3 questions, each carry equal marks.	$\begin{array}{\|c} \hline \text { Mark } \\ \mathbf{s} \end{array}$	CO	Level
1	a	Calculate the current in 20Ω resistor in the network shown in fig. 1 by sourse transformation method.	5	CO1	L4
	b	Obtain Expressions for a set of Equivalent delta connected impedances to replace a set of star connected impedances.	5	CO2	L3
	c	State and explain thevenins theorem.	5	CO3	L3
2	a	Reduce the network shown in fig.2a. to a single voltage source in series with a resistance using source shifting and transformation.	5	COI	L4
	b	Determine the current through 10Ω resistance in the network shown in fig.2b. by Star-Delta conversion.	5	CO2	L4
	c.	Obtain the norton's equivalent of the network shown in fig,	5	CO4	L4
3	a	For the network shown in fig.3a, find the node voltages.	5	CO2	L4
	b	Solve for Mesh current in the fig. 3b given below,	5	CO1	L4
		Calculate the thevenin's equivalent circuit across A, B terminals for the network shown in fig below,	5	CO3	L4

EE
Prepared by

		SKIT	Teaching Process	Rev No.: 1.0		
		Doc Code:	SKIT.Ph5b1.F02	Date: 01-08-2019		
		Title:	Course Plan	Page: 16 / 44		
Copyright ©2017. CAAS. All rights reserved.						
4	O	Obtain the delta connected equivalent of the network shown in fig.4a Find the power delivered by the 6 V source in the circuit shown in fig. 4 b using Mesh analysis.		5	CO2	L4
	b F			5	CO3	L4
	c S	State and expl	lain maximum power transfer theorem for AC network	5	CO4	L3

b. Assignment - 1

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions							
Crs Code:	18EE32	Sem:	3	Marks:	$5 / 10$	Time:	$90-120$ minutes
Course:	Electrical circuit Analysis						

Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

SNo	USN	Assignment Description	$\begin{array}{\|c\|} \hline \text { Mark } \\ \mathbf{s} \end{array}$	CO	Level
1	1KT17EE002	Calculate the current in 20Ω resistor in the network shown in fig. 1 by sourse transformation method.	5	COI	L4
2	1KT17EE003	Obtain Expressions for a set of Equivalent delta connected impedances to replace a set of star connected impedances.	5	CO2	L3
3	$1 \mathrm{KT17EE004}$	Reduce the network shown in fig.2a. to a single voltage source in series with a resistance using source shifting and transformation.	5	COI	L4
4	1KT17EE006	Determine the current through 10Ω resistance in the network shown in fig.2b. by Star-Delta conversion.	5	CO2	L4

EE
Prepared by

SKIT		Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5bl.F02	Date: $01-08-2019$
Title:	Course Plan	Page: $17 / 44$	

Copyright ©2017. cAAS. All rights reserved.

EE
Prepared by

EE
Prepared by

SKIT		Teaching Process
	Rev No.: 1.0	
	Doc Code:	SKIT.Ph5bl.F02
Title:	Course Plan	Date: $01-08-2019$

Copyright ©2017. cAAS. All rights reserved.

		applying superposition theorem figQ.3(a)			
23	1 KT1 7EE011	For the network shown in Fig.Q.4(a), obtain the Norton's equivalent as seen from the terminals $a-b$.	5	CO3	L4
24	1KT17EE014	Determine the current $\mathrm{I}_{\mathbf{2}}$ by applying Millman's theorem for the network shown in Fig.Q.4(b). Fig.Q.4(b).	5	CO3	L4
25	$1 \mathrm{KT1} 7 \mathrm{EE} 015$	Using Norton's theorem, find RN and IN of the circuit in Figure at terminals a-b.	5	CO3	L4
26	1KT16EE002	Use the superposition theorem to find v in the circuit of below Figure	5	CO4	L4
27	1KT16EE010	Find the Thevenins equivalent with respect to terminals ab in the circuit shown in Fig	5	CO3	L4
28	1KT16EE024	Find the current through 4Ω resistor in the Figure shown below using superposition theorem.	5	CO4	L4

EE
Prepared by

D2. TEACHING PLAN - 2

Module - 3

Title:	Divide and Conquer	Appr Time:	16 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Apply the knowledge of resonance for series and parallel RLC circuit and calculation of various electrical quantities for 3 phase circuits	CO5	L3
2	To study necessary conditions for driving point functions, transfer function for their application to a given network for analyzing circuit design.	CO6	L4
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Introduction to Resonant Circuits,	CO5	L2
2	Analysis of simple series RLC and parallel RLC circuits under resonances.	CO5	L4
3	Problems on Resonant frequency	CO5	L3,L4
4	Bandwidth and Quality factor at resonance	CO5	L2
5	Problems	CO5	L3,L4
6	Transient analysis of RL and RC circuits under dc and ac excitations	CO6	L3

EE
Prepared by

EE
Prepared by

(eze	SKIT	Teaching Process	Rev No.: 1.0	
	Doc Code:	SKIT.Ph5b1.F02	Date: 01-08-2019	
	Title:	Course Plan	Page: 22 / 44	
copyright ©2017. cAAS. All rights reserved.				
7	In the network shown in the Figure 7 find the value of C for resonance to take place when $\omega=500 \mathrm{rad} / \mathrm{sec}$			L4
8	Write the expression for impedance of R-L-C series circuit. When does it have minimum impedance? Define Q-factor. Find the Q-factor for an inductor and capacitor.		CO5	L4
9	A coil of inductance 0.1 H and resistance of 10Ω is connected in series with a capacitor of $0.1 \mu \mathrm{~F}$. Find frequency of resonance of the circuit. Also find quality factor of the circuit at resonance.		CO5	L4
10	An inductance of 0.5 H , a resistance of 5 ohm , and a series across a 220 v resonates. Find the current at resonance, b the voltage across capacitance at resonance.		CO5	L4
11	Why the net voltage across L and C in a series $\mathrm{R}-\mathrm{L}-\mathrm{C}$ series circuit under resonance is zero.		CO5	L4
12	An $\mathrm{R}-\mathrm{L}$ circuit has $\mathrm{R}=1$ ohms, $\mathrm{L}=0.00955 \mathrm{H}$. Calculate the value of series capacitor which converts the circuit to a R-L-C series circuit taking double the value of original current. Assume 50 Hz supply. Supply voltage is kept constant.		f ${ }^{\text {co5 }}$	L4
13	A series RLC circuit with $\mathrm{R}=100 \mathrm{~W}, \mathrm{~L}=0.5 \mathrm{H}, \mathrm{C}=40 \mu \mathrm{~F}$ has an applied voltage of 100 ± 00 with variable frequency. Calculate the resonance frequency, current at resonance and voltage across R, L, and C. Also calculate the Q-factor, upper and lower cutoff frequencies.		CO5 	L4
14	Two coupled coils with respect to self inductances $\mathrm{L} 1=0.6 \mathrm{H}, \mathrm{L} 2=$ 0.4 H having a $\mathrm{K}=0.4$. Coil 2 has 100 turns. The current in coil 1 is $11=10 \sin 200$ t Amperes. Determine the voltage at coil 2 and maximum flux set up by coil 1 .		CO5	L4
15	With respect to series resonant circuit, prove that bandwidth is inversely proportional to the Q-factor at resonance		is CO5	L4
16	Switch k is opened at time $\mathrm{t}=0$ after reaching steady state in the circuit shown in fig, Find $V_{k}, d V_{k} / d t$ and $d^{2} V_{k} / d t^{2}$ at time $t=0^{+}$		CO6	L4
17	In the circuit of $\mathrm{V}, \mathrm{dV} / \mathrm{dt}$ an	shown in fig switch is open at time $t=0$. Find the values $\mathrm{nd}^{2} \mathrm{~V} / \mathrm{dt}^{2}$ at $\mathrm{t}=0^{+}$	CO6	L4

EE
Prepared by

	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date: 01-08-2019
	Title:	Course Plan	Page: 23 / 44

Copyright ©2017. cAAS. All rights reserved.

18	A switch is closed at time $\mathrm{t}=0$ in the circuit shown in fig below, Find the values of $\mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{di}_{1} / \mathrm{dt}, \mathrm{di}_{2} / \mathrm{dt}$ at the time $\mathrm{t}=0^{+}$	CO6	L4
19	Switch K is opened after the circuit has reached steady state at $\mathrm{t}=0 \mathrm{in}$ the network shown in figure. Find the expression for $\mathrm{V} 2(\mathrm{t}) \mathrm{for} \mathrm{time}$ $\mathrm{t}>0$.	CO6	L4
\mathbf{e}			
1			
2			
3			
5			

Module - 4

Title:	Divide and Conquer	Appr Time:	16 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Evaluate the initial conditions using knowledge of Laplace transformation	05	L4
2	Synthesize typical waveforms using Laplace transformation	05	L3
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Introduction to Laplace transformation (LT)	CO7	L1
2	LT of Impulse, Step, Ramp, Sinusoidal signals and shifted functions	CO7	L2,L3
3	Problems	CO7	L3,L4
4	Problems	CO7	L3,L4
5	Waveform synthesis	CO8	L3
6	Problems	CO8	L3,L4

EE
Prepared by

SKIT		Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date: 01-08-2019
	Title:	Course Plan	Page: $24 / 44$

Copright	2017. cAAS. All rights reserved.		
7	Problems	CO8	L3,L4
8	Initial and Final value theorems	C08	L3
9	Problems	C08	L3,L4
10	Problems	C08	L3,L4
c	Application Areas	CO	Level
1	Process Controls, Digital Signal Processing.	CO7	L3,L4
2	System Modelling ,Analysis of Electrical Circuits ,Nuclear Physics.	CO8	L3,L4
d	Review Questions	-	-
1	Using Laplce transform obtain an expression for the current $i(t)$ in the network of shown fig, Assume zero critical conditions.	C07	L1
2	For the critically related network of the fig shown, obtain expression for the current $i(t)$. use laplace transform.	CO7	L3
3	Determine the laplace transform of the periodic sawtooth waveform of given fig.Use gate function.	C08	L2
4	Find $i(t)$ using Laplace transforms switch is closed at time $t=0$ with zero initial conditions	C07	L4
5	Find Laplace transform of the following fi. 111 ctions i) $\sin \omega t$ ii) $\cos \omega t$ iii)te ${ }^{-\mathrm{at}}$	C08	L2
6	State and prove initial value theorem.	C08	L5
7	In the circuit shown in Fig. find the expression for current if switch is closed at $\mathrm{t}=0$. Assume initial charge on capacitance is zero.	C08	L2

EE
Prepared by

E2. CIA EXAM - 2

a. Model Question Paper - 2

EE
Prepared by
SKIT
,

Doc Code: SKIT.Ph5bl.F02
Title: Course Plan

	d	Find inverse Laplace transform of the following functions i) $S^{2}+5 /\left(s\left(s^{2}+4 s+4\right)\right)$ ii) $2 \mathrm{~S}+6 /\left(\mathrm{S}^{2}+6 \mathrm{~S}+25\right)$	4	CO6	L3
2	a	Derive for a resonant circuit the resonant frequency $\mathrm{fo}=\sqrt{ } \mathrm{f} 1 . \mathrm{f} 2$, where $\mathrm{f} 1 \& \mathrm{f} 2$ are the 2 half-power frequencies.	3	CO7	L2
	b	Find the value of L for which the circuit given in the fig below resonates at $\omega=5000 \mathrm{rad} / \mathrm{sec}$.	4	CO5	L4
		In the circuit shown in fig switch is open at time $t=0$. Find the values of $\mathrm{V}, \mathrm{dV} / \mathrm{dt}$ and $\mathrm{d}^{2} \mathrm{~V} / \mathrm{dt}^{2}$ at $\mathrm{t}=0^{+}$.	4	CO6	L3
		using initial and final value theorem, where they apply, find $f(0)$ and $f(\infty)$ for the following functions i) $S^{3}+7 S^{2}+5 /\left(S\left(S^{3}+3 S^{2}+4 S+2\right)\right)$ ii) $S(S+4)(S+8) /(S+1)(S+6)$	4	CO7	L3
3	a	In the circuit shown in fig, find the current $i(t)$. The current has reached steady state with switch closed and switch is open at $\mathrm{t}=0$.	5	CO7	L4
	b	Obtain the Laplace transform of , i) Ramp function $t u(t)$ ii) Exponential function $e-a t u(t)$ iii) sinusoidal function sinwt $u(t)$	3	C08	L4
	c	A switch is closed at time $t=0$ in the circuit shown in fig below, Find the values of $\mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{di}_{1} / \mathrm{dt}, \mathrm{di}_{2} / \mathrm{dt}$ at the time $\mathrm{t}=0^{+}$	4	CO6	L1
	d	Find $i(t)$ using Laplace transforms switch is closed at time $t=0$ with zero initial conditions	4	CO7	L2

EE
Prepared by

b. Assignment - 2

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions							
Crs Code:	18 EE 32	Sem:	3	Marks:	$5 / 10$	Time:	$90-120$ minutes
Course:							

Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

SNo	USN	Assignment Description	Mark \mathbf{s}	CO	Level
1	1 KT17EE002	Using Laplce transform obtain an expression for the current $i(t)$ in the network of shown fig, Assume zero	5	CO	

EE
Prepared by

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 01-08-2019	
Title:	Course Plan	Page: $28 / 44$	

Copyright ©2017. cAAS. All rights reserved.

		critical conditions.			
2	1KT17EE003	For the critically related network of the fig shown, obtain expression for the current $i(t)$. use laplace transform.	5	CO	
3	1KT17EE004	Switch K is opened after the circuit has reached steady state at $\mathrm{t}=0$ in the network shown in figure. Find the expression for $\mathrm{V} 2(\mathrm{t})$ for time $\mathrm{t}>0$.	5	CO	
4	1KT17EE006	In the circuit shown in fig the relay is adjusted to operate at a current of 5 A . Switch is closed at time $\mathrm{t}=0$ and relay is found to operate at $t=0.347 \mathrm{sec}$. Find the value of inductance.	5	CO	
5	1KT17EE007	Using convolution theorem find the inverse Laplace transform of following functions, i) $F(s)=1 /(s-a)^{2} \quad$ and ii) $F(s)=1 / S(S+1)$	5	CO	
6	1KT17EE008	Obtain the Laplace transform of the triangular wave shown in fig	5	CO	
7		A switch is closed at time $\mathrm{t}=0$ in the circuit shown in fig below, Find the values of $\mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{di}_{1} / \mathrm{dt}, \mathrm{di}_{2} / \mathrm{dt}$ at the time $t=0^{+}$	5	CO	

EE
Prepared by

SKIT		Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date: 01-08-2019
	Title:	Course Plan	Page: $29 / 44$

Copyright ©2017. cAAS. All rights reserved.

EE
Prepared by

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 01-08-2019	
Title:	Course Plan	Page: $30 / 44$	

17	$1 \mathrm{KT1} \mathrm{7EE003}$	Using Laplce transform obtain an expression for the current $\mathrm{i}(\mathrm{t})$ in the network of shown fig, Assume zero critical conditions.	5	CO
18	$1 \mathrm{KT1} \mathrm{7EE004}$	For the critically related network of the fig shown, obtain expression for the current $\mathrm{i}(\mathrm{t})$. use laplace transform.	5	CO
19	1 KT1 7EE006	Switch K is opened after the circuit has reached steady state at $t=0$ in the network shown in figure. Find the expression for $\mathrm{V} 2(\mathrm{t})$ for time $\mathrm{t}>0$.	5	CO
20	1KT17EE007	In the circuit shown in fig the relay is adjusted to operate at a current of 5 A . Switch is closed at time $t=0$ and relay is found to operate at $t=0.347 \mathrm{sec}$. Find the value of inductance .	5	CO
21	$1 \mathrm{KT1}$ 7EE008	Using convolution theorem find the inverse Laplace transform of following functions, i) $F(s)=1 /(s-a)^{2} \quad$ and ii) $F(s)=1 / S(S+1)$	5	CO
22	1 KT17EE010	Obtain the Laplace transform of the triangular wave shown in fig	5	CO
23	1 KT1 7EE011	A switch is closed at time $\mathrm{t}=0$ in the circuit shown in fig	5	CO

EE
Prepared by

	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date: 01-08-2019
	Title:	Course Plan	Page: 31 / 44

Copyright ©2017. cAAS. All rights reserved.

EE
Prepared by

	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date: 01-08-2019
	Title:	Course Plan	Page: 32 / 44

Copyright ©2017. cAAS. All rights reserved.
D3. TEACHING PLAN - 3
Module - 5

Title:	Divide and Conquer	Appr Time:	16 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Solve unbalanced three phase systems.	5	L4
2	Evaluate the performance of two port networks	5	L4
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Analysis of three phase systems	CO9	L2
2	calculation of real and reactive powers.	CO9	L2
3	Problems	CO9	L2
4	Problems	CO9	L4
5	Two Port networks: Definition	CO10	L4
6	Open circuit impedance	CO10	L4
7	Problems	CO10	L4
8	Short circuit admittance	CO10	L3
9	Problems	CO10	L4
10	Transmission parameters and their evaluation for simple circuits.	CO10	L4
c	Application Areas	CO	Level
1	Modeling and control of three phase system	CO9	L4
2	amplification circuits and filters	CO10	L4
d	Review Questions	-	-
1	A star connected load with $(3+j 0) Q(2+j 3) n$ and $(2-j) n$ connected in $3-\mathrm{ph}, 4$ wires, Y connected system with phase sequence ACB. Find line currents and neural current.	CO9	L2
2	Explain the concept of unbalanced load. State various types of unbalanced loads.	CO9	L2
3	Derive the condition for the symmetrical property in two port networks in case of admittance parameters.	CO9	L2
4	Determine the hybrid parameters for the network shown in the figure below	CO9	L3
5	A three phase delta connected balanced supply 200 V is connected to a star connected unbalanced load of impedances(2+3j),(4-6j)and (2-5j)find the	CO9	L3

EE
Prepared by

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 01-08-2019	
Title:	Course Plan	Page: $33 / 44$	

Copyright ©2017. cAAS. All rights reserved

	line currents.		
6	Explain in detail about the Loop method of solving three phase unbalanced circuits	$\mathrm{CO9}$	L 4
7	Derive the condition for the reciprocal property in two port networks in case of ABCD parameters	$\mathrm{CO10}$	L 4
8	Determine the impedance parameters for the network shown in the figure below	$\mathrm{CO10}$	$\mathrm{L4}$
9	Derive the condition for the symmetrical property in two port networks in case of hybrid parameters	$\mathrm{CO10}$	L 4
10	Determine the transmission parameters for the network shown in the figure below	$\mathrm{CO10}$	L 4
\mathbf{e}	Experiences		
1			
2		-	
3			
4			
5			

E3. CIA EXAM - 3

a. Model Question Paper - 3

Crs Code:	18 EE32	Sem:	3	Marks:	30	Time:	75 minutes

Course: Electrical circuit analysis

-	-	Note: Answer any 2 questions, each carry equal marks.	Mark s	CO	Level
1	a	Explain the method of analyzing a 3-Фstar connected load	5	CO9	L3
	b	A delta connected three phase load with impedance is connected acros a 3-ph 230V, 50Hzsymmetrical RYB supply. The impedances are $(28+j O) Q$, $(25+j 45) Q$ and $(0-j 65) Q$. Find line and phase currents.	5	CO9	L4
2	a	A star connected load with ($3+\mathrm{j} 0) \mathrm{Q}(2+\mathrm{j} 3) \mathrm{n}$ and $(2-\mathrm{jl}) \mathrm{n}$ connected	5	CO9	L4

EE
Prepared by

b. Assignment - 3

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions							
Crs Code:	18 EE32	Sem:	3	Marks:	$5 / 10$	Time:	$90-120$ minutes
Course:	Electric circuit analysis						

Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

SNo	USN	Assignment Description	Mark \mathbf{s}	CO	Level
1	$1 \mathrm{KT17EE002}$	A star connected load with (3+j0) Q (2+j3)n and (2-j)n connected in 3-ph, 4 wires, Y connected system with phase sequence ACB. Find line currents and neural current.	5	CO9	$\mathrm{L4}$
2	$1 \mathrm{KT17EE003}$	Explain the concept of unbalanced load. State various types of unbalanced loads.	5	CO9	$\mathrm{L3}$

EE
Prepared by

EE
Prepared by

SKIT		Teaching Process	Rev No.: 1.0
Doc (2)	Date: $01-08-2019$		
Title:	Course Plan	Page: $36 / 44$	

Copyright ©2017. cAAS. All rights reserved.

14	1KT18EE400	Derive Y -parameters and Transmission parameters of a circuit in terms of its parameters.	5	CO10	L4
15	1KT18EE401	Find the z parameters and h - parameters for the circuit shown in Fig. Q8(b)		CO10	L4
16	1KT17EE002	A star connected load with $(3+\mathrm{j} 0) \mathrm{Q}(2+\mathrm{j} 3) \mathrm{n}$ and $(2-\mathrm{j}) \mathrm{n}$ connected in $3-\mathrm{ph}, 4$ wires, Y connected system with phase sequence ACB. Find line currents and neural current	5	CO9	L4
17	1KT17EE003	Explain the concept of unbalanced load. State various types of unbalanced loads.	5	CO9	L4
18	1KT17EE004	Find 'T' parameters of the circuit in Fig.	5	CO10	L4
19	1KT17EE006	Explain the method of analyzing a 3-ph star connected load by using max power transfer theorem	5	CO9	L3
20	1KT17EE007	A delta connected three phase load with impedance is connected across a $3-\mathrm{ph} 230 \mathrm{~V}$, 50 Hzsymmetrical RYB supply. The impedances are $(28+j 0) Q,(25+j 45) Q$ and ($\mathrm{O}-\mathrm{j} 65$) Q. Find line and phase currents.	5	CO9	L4
21	1KT17EE008	Find z parameters of the circuit shown in Fig	5	CO10	L3
22	1KT17EE010	Define Z and Y parameters.	5	CO10	L3
23	1KT17EE011	Find the T parameters for the 2-port network shown in the Fig.9(c).	5	CO10	L4

EE
Prepared by

F. EXAM PREPARATION

1. University Model Question Paper

Course: Elecctrical circuit analysis
Month / Year DEC/2018

EE
Prepared by

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 01-08-2019	
Title:	Course Plan	Page: $38 / 44$	

Copyright ©2017. cAAS. All rights reserved.

EE
Prepared by

EE
Prepared by

EE
Prepared by

SKIT		Teaching Process	Rev No.: 1.0
(2)	Doc Code:	SKIT.Ph5b1.F02	Date: 01-08-2019
Title:	Course Plan	Page: $41 / 44$	

Copyright ©2017. cAAS. All rights reserved.

	c	Find the T parameters for the 2-port network shown in the Fig.9(c).	6	C010	L4
		OR			
10	a	A series RLC circuit has for its driving point admittance pole-zero diagram as shown in Fig.Q.10(a). Find the valves of R-L - C.	10	CO9	L4
	b	Find the response $i(t)$ when input signal i) $5 \delta(t-2)$ ii) $5 u(t-2)$ is given to R-L series Circuit. Assume initial current through the inductor to be zero.	10	C010	L4

2. SEE Important Questions

Course: Crs Code:		Electrical circuit analysis					Month / YearMay /2018			
		18 EE 32	Sem:	3	Marks:	60	Time:		$\begin{aligned} & 180 \\ & \text { minut } \end{aligned}$	
Note Answer all FIVE full questions. All questions carry equal marks.								-	-	
$\begin{array}{c\|} \hline \text { Mo } \\ \text { dul } \\ \mathrm{e} \end{array}$	Qno. Important Question							$\begin{gathered} \text { Mark } \\ \mathbf{s} \end{gathered}$	CO	Year
1	1	Transform the network given in Fig Ql(a) in to a single voltage source using source transformation technique.						6	CO1	2017
	2	Find the currents $\mathrm{i}_{1}, \mathrm{i}_{2}$ and i_{3} in the network given Fig $\mathrm{Q}(\mathrm{b})$ using mesh analysis						7	CO1	2017
		Find current through 0.5Q resistance in the Fig QI(c) using node						8	CO2	2017

EE

Prepared by

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 01-08-2019	
Title:	Course Plan	Page: $42 / 44$	

Copyright ©2017. cAAS. All rights reserved.

		analysis			
			Find the three unknown currents in the circuit shown in Fig. using mesh analysis	6	CO2

EE
Prepared by

		SKIT	Teaching Process R	Rev No.: 1.0		
		Doc Code:	SKIT.Ph5bl.F02 D	Date: 01-08-2019		
		Title:	Course Plan P	Page: 43 / 44		
Copyright ©2017. CAAS. All rights reserved.						
		Rc = Resistance in the capacitor branch.				
	3	In the circuit shown in Fig, the switch K is changed from position A to B at $\mathrm{t}=0$, steady state have been reached before switching calculate $\mathrm{i}(\mathrm{t}), \mathrm{di}(\mathrm{t}) / \mathrm{dt}, \mathrm{d}^{2}(\mathrm{t}) / \mathrm{dt}^{2}$ at $\mathrm{t}=0^{+}$		8	CO6	2007
	4	Determine i , $\mathrm{di} / \mathrm{dt}$ and $\mathrm{d}^{2} \mathrm{i} / \mathrm{dt}^{2}$ at $\mathrm{t}=0^{+}$when the switch K is moved from position 1 to 2 at $\mathrm{t}=0$ for the network shown in Fig		8	CO6	2004
	5	In the network shown Fig. K is closed at $\mathrm{t}=0$ with zero current in the inductor. Find: $i(t), \mathrm{di}(\mathrm{t}) / \mathrm{dt}$ at $\mathrm{t}=0^{+}$and obtain an expression for $\mathrm{i}(\mathrm{t})$ at $\mathrm{t}>=0^{+}$by classical method.		8	CO6	2004
4	1	For the critically related network of the fig shown, obtain expression for the current $\mathrm{i}(\mathrm{t})$. use laplace transform.		7	CO7	2004
	2	Determine the laplace transform of the periodic sawtooth waveform of given fig.Use gate function.		8	CO7	2004
	3	Find Laplace transform of the following fig 1 i) $\sin \omega t$ ii) $\cos \omega t$ iii) $\mathrm{e}^{-\mathrm{at}}$		7	CO7	2006
	4	State and prove initial value theorem.		7	CO8	2004
	5	Using initial and final value theorems, where they apply, find $f(0)$ and $f(\nsim)$ for the following functions.$\text { i) } S^{3}+7 S^{2}+5 / S\left(S^{3}+3 S^{2}+4 S+2\right) \quad \text { ii) } S(S+4)(S+8) /(S+I)(S+6)$		8	CO8	2007
5	1	Explain the concept of unbalanced load. State various types of unbalanced loads		7	CO9	2009
	2	Find z parameters of the circuit shown in Fig,		8	CO10	2007

EE
Prepared by

	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date: 01-08-2019
	Title:	Course Plan	Page: 44 / 44

Copyright ©2017. cAAS. All rights reserved.

